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Abstract— Recent advances in unmanned aerial vehicles
suggest that collecting aerial agricultural images can be cost-
efficient, which can subsequently support automated precision
irrigation. To study the potential for machine learning to learn
local soil moisture conditions directly from such images, we
developed a very fast, linear discrete-time simulation of plant
growth based on the Richards equation. We use the simulator
to generate large datasets of synthetic aerial images of a
vineyard with known moisture conditions and then compare
seven methods for inferring moisture conditions from images,
in which the "uncorrelated plant" methods look at individual
plants and the "correlated field" methods look at the entire
vineyard: 1) constant prediction baseline, 2) linear Support
Vector Machines (SVM), 3) Random Forests Uncorrelated
Plant (RFUP), 4) Random Forests Correlated Field (RFCF),
5) two-layer Neural Networks (NN), 6) Deep Convolutional
Neural Networks Uncorrelated Plant (CNNUP), and 7) Deep
Convolutional Neural Networks Correlated Field (CNNCF).
Experiments on held-out test images show that a globally-
connected CNN performs best with normalized mean absolute
error of 3.4%. Sensitivity experiments suggest that learned
global CNNs are robust to injected noise in both the simulator
and generated images as well as in the size of the training
sets. In simulation, we compare the agricultural standard of
flood irrigation to a proportional precision irrigation controller
using the output of the global CNN and find that the lat-
ter can reduce water consumption by up to 52% and is
also robust to errors in irrigation level, location, and timing.
The first-order plant simulator and datasets are available at
https://github.com/BerkeleyAutomation/RAPID.

I. INTRODUCTION

An estimated 75% of freshwater is used in agriculture,
but only between 5% and 30% of this irrigation is absorbed
by plants [34]. Environmental scientists predict that water
scarcity will be a major issue in the coming decades [35].

In precision agriculture, measurements determine the status
of individual plants to modify irrigation and other farm
resources accordingly [24]. Recent advances in robotics can
facilitate precision irrigation with devices that interact with
the plants and irrigation pipelines directly [7, 11] or monitor
conditions such as soil moisture [27]. Others take advantage
of recent advances in unmanned aerial vehicles (UAVs) [10,
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Fig. 1: Top left: Moisture dissipation pattern. Top right: Synthetic
aerial image generated by the simulator. We use the simulator to
generate 1,200 examples to form a training dataset, and we use
support vector machines, random forests, and convolutional neural
networks to infer moisture dissipation patterns from images. Bottom
left: Example of a test image. Bottom right: Moisture dissipation
predicted by the CNN.

37]. Under the NSF National Robotics Initiative (NRI), the
Robot Assisted Precision Irrigation Delivery (RAPID) project
investigates how co-robotic devices can be used to adjust
irrigation emitters. Prior work in this project has involved
developing robotic tools to adjust emitters [4, 5, 11] and
routing algorithms for mobile robots [31, 32].

In precision irrigation, soil moisture conditions determine
the amount of irrigation needed. To the best of our knowledge,
there are no publicly available datasets with pairs of aerial
images and local soil moisture conditions at the plant level.
In this paper, we explore machine learning methods to
learn mappings between images and soil moisture dissipation
patterns and how the learned models could control precision
irrigation at the plant level. An overview is shown in Fig.
1. We study this problem in simulation as a first step
to explore the potential of machine learning for precision
irrigation before undertaking extremely costly physical field
experiments. We present a first-order simulator that models
the local soil moisture at each plant over time using a discrete-
time, linear approximation of the Richards equation [33] for
soil water flow. One major benefit of this first-order simulator
is its speed, which allows us to quickly generate datasets of
vineyard images based on different soil moisture dissipation
patterns. We perform experiments with seven methods to learn



the inverse mapping from images to soil moisture dissipation
patterns, in which the "uncorrelated plant" methods look
at individual plants and the "correlated field" methods look
at the entire vineyard: 1) constant prediction baseline, 2)
linear Support Vector Machines (SVM), 3) Random Forests
Uncorrelated Plant (RFUP), 4) Random Forests Correlated
Field (RFCF), 5) two-layer Neural Networks (NN), 6) Deep
Convolutional Neural Networks Uncorrelated Plant (CNNUP),
and 7) Deep Convolutional Neural Networks Correlated Field
(CNNCF). We analyze the robustness of these models by
conducting sensitivity experiments, exposing the learning
methods to limited numbers of training examples and injecting
two types of noise: simulation noise, where we perturb the
simulator dynamics, and image noise, where we perturb the
generated aerial images. We also implement a proportional
precision irrigation controller in simulation using the learned
models.

This paper makes the following contributions:
1) A novel first-order agricultural simulator that uses a

discrete-time, linear approximation of the Richards
equation for soil moisture dissipation.

2) A labeled dataset for supervised learning, in which the
examples are pairs of soil moisture dissipation patterns
and the generated synthetic aerial images, containing
1200 training examples and 200 test examples.

3) Experiments comparing seven machine learning meth-
ods that are able to learn inverse models from aerial im-
ages to the underlying soil moisture dissipation patterns
and experiments with a proportional precision irrigation
controller using the learned globally-connected CNN.

II. RELATED WORK

A. Agricultural Simulators

Several crop simulators have been published in the agricul-
tural community. WOFOST [8], DSSAT [19], and MONICA
[26] simulate aggregate crop statistics such as yield based on
parameters such as weather and location. Other simulators
provide similar information for specific crops, like SUNFLO
[6] for sunflowers and MaizSim [38] for corn. Such simulators
provide accurate estimates by modeling plant biology and the
environment but generally output aggregate crop statistics over
entire vineyards rather than on a per-plant basis, which cannot
be used to generate labeled data for a precision irrigation
model. While our first-order simulator does not explicitly
model physical processes at the level of plant biology, such
as in [22], it provides reasonable simulated aerial images of
a field of crops, given local soil moisture dissipation rates
at each of the plants. A comparison between the simulator
output and a real vineyard is shown in Fig. 2.

B. Agricultural Image Datasets

To the best of our knowledge, large-scale, public datasets
of paired aerial field images and corresponding local soil
conditions for individual plants do not exist. Of the existing
agricultural image datasets, many are tailored to classification
and segmentation experiments. Söderkvist published a dataset
of leaves from Swedish trees [29], Wu et al. published the

Fig. 2: Example of (left) a true aerial image of a vineyard of
Symphony grapes in Cowell Ranch of Snelling, CA and (right) a
synthetic aerial image generated by the first-order simulator. There
is inherent heterogeneity of plant growth in both.
Flavia dataset of leaves from 33 plant species [36], and
Kumar et al. published a combined dataset of high-resolution
leaves from the Smithsonian collection and images taken
from mobile phones in the field [21]. These labeled datasets
are used for plant species identification. Recently, Haug et
al. [16] published a labeled dataset of aerial field images
for the purpose of segmentation and crop/weed classification.
Hassan-Esfahani et al. took aerial images of fields using a
UAV [13–15] as part of the AggieAir™ project led by Cal
Coopmans and Alfonso Torres Rua. They also made local soil
moisture measurements to create a dataset with 184 points,
demonstrating the potential to collect a larger dataset. In this
paper, we generate a dataset that consists of 1,400 synthetic
aerial images of a vineyard and corresponding local soil
moisture conditions at each plant.

C. Machine Learning in Agriculture

There exist previous applications of machine learning in
agricultural settings to learn soil moisture conditions. Schmitz
et al. [28] used neural networks to learn the relationship
between irrigation and soil moisture profiles for drip irrigation
to optimize soil moisture. Möller et al. [25] utilized visual and
thermal images of crops from a Forward-Looking Infrared
Radar (FLIR) thermal imaging system to estimate crop water
stress index (CWSI) [18]. Hassan-Esfahani et al. estimated
topsoil moisture profiles using Relevance Vector Machines,
Multilayer Perceptrons, and Bayesian Neural Networks and
multiple types of images collected using a UAV [13–15] in
the AggieAir™ project. Other applications involve SVMs or
RVMs to estimate soil parameters using a variety of data
such as weather data and crop physiological characteristics
instead of aerial images [2, 3, 39]. In this paper, we present an
end-to-end simulation system that generates synthetic aerial
images and learns mappings from the images to local soil
moisture conditions using both previously used techniques
as well as deep CNN’s. We also evaluate the effectiveness
of precision irrigation controllers using the learned models,
which can be more efficient than traditional methods such as
flood irrigation. For example, Mateos et al. [23] compared
drip irrigation and furrow irrigation, a type of flood irrigation,
in cotton crops and used up to 46% less water with the former
strategy.

III. PROBLEM STATEMENT AND ASSUMPTIONS

Our goal is to learn a model that takes a synthetic RGB
aerial image as input and outputs predictions of soil moisture



dissipation patterns. We first address the forward problem:
given soil moisture dissipation patterns, rapidly generate a
synthetic 320×320 RGB image of a vineyard containing p
plants at t days after the plants are planted, given d ∈ Rp,
the local soil moisture dissipation rate at each of the plants.

Here, we present modeling assumptions for the design
of the simulator and for the prediction of soil moisture
dissipation patterns. For the growth of each plant in the
vineyard, we use the model of one-dimensional vertical water
flow to simulate the dynamics of water flow in soil. This can
be expressed with the following nonlinear partial differential
equation, which is the basis of the well-known Richards
equation [33]:

∂ s
∂ t

=−∂q
∂ z
−S(h),

where s is the volumetric water content in the soil (cm3 of
water per cm3 of soil), t is the time (days), ∂q

∂ z is a term that
describes the flow of soil water as a result of differences in
soil water potential, and S(h) is a term that describes the soil
water extraction by plant roots (cm3 of water per cm3 of soil
per day). In this paper, we refer to s as a measure of soil
moisture. In the simulator, we approximate this differential
equation using the following discrete linear update equation,
which is why we refer to the simulator as being first-order:

st = st−1 +∆st , where ∆st =−(r−at)−U(t).

Here, r is the soil drainage rate, at is the irrigation rate
applied during day t, and U(t) is the rate at which plant
water uptake occurs during day t. In relation to the Richards
equation, we approximate − ∂q

∂ z with at − r, the rate at which
water becomes available for use during day t, and we also
have S(h) = U(t). Under optimal moisture conditions, the
following equation for U(t) holds [9]:

U(t) = R(t) ·Tp(t),

where R(t) is a factor related to root length density at time t,
and Tp(t) is potential transpiration rate (cm per day) that is
driven by weather. In the first-order simulator, we assume the
following remain constant over time for a particular plant: R(t)
(water uptake capacity due to root size does not change as
the plant grows), Tp(t) (weather does not change significantly
to cause variation in daily plant water transpiration), and
r (the local soil drainage rate does not vary). Thus, in the
simulator, U(t) is also constant over time, and we simply
write U . Under these assumptions, our discrete-time linear
update equation can be written as follows:

st = st−1 +at − (r+U) = st−1 +at −d.

We define d = r+U to be the moisture dissipation rate, which
is a measure of local water loss, e.g., due to soil drainage,
uptake by the plant, evaporation, etc. We attempt to learn d
from the images. We also assume linear plant growth, where
each plant grows a constant f new leaves on day t if st > 0.
The simulator is described in further detail in Section IV-A.

The first objective is to use the simulator to generate a
dataset containing pairs of ground-truth local soil moisture

dissipation rates of the plants d and the resulting image x. We
define d(i) and x(i) to be the soil moisture dissipation rates
and corresponding image, respectively, for the i-th example
in the training dataset for i = 1 to Ntrain. Using the same
process, we generate a test dataset containing Ntest examples.

The next objective is to learn the inverse model Hθ∗ from
the images {x(i)}Ntrain

i=1 to the local soil moisture dissipation
rates {d(i)}Ntrain

i=1 of the plants in the images, where H
represents the model, θ represents the parameters of H, and
Hθ (x) represents the predicted soil moisture dissipation rates
given by model Hθ on input image x. Ultimately, we seek
to find θ ∗ ∈Θ, where Θ represents the space of parameters
θ , such that the expected loss L over all possible simulated
images that can result from the process described in Section
IV-B is minimized, i.e.,

θ
∗ = argmin

θ∈Θ

E[L(d,Hθ (x))].

We want to minimize the mean squared error loss function:

L(d,Hθ (x)) =
1
p

p∑
j=1

(d j−Hθ (x) j))
2 .

Since it is difficult to minimize the expected loss, we seek θ ∗

that minimizes the loss over our generated training dataset,

θ
∗ = argmin

θ∈Θ

Ntrain∑
i=1

L(d(i),Hθ (x(i))).

IV. FIRST-ORDER PLANT SIMULATOR

A. Discrete Time Simulator

We define a vineyard of length l and width w. We assume
n columns of plants uniformly spaced across the vineyard
and m individual plants uniformly spaced within each column
for a total of mn individual plants.

The simulator generates aerial images of the vineyard at
discrete timesteps (days), based on the following parameters
and inputs.
• d ∈ Rmn is a vector of local soil moisture dissipation

rates for each of the plants, measuring the rate of water
loss due to a combination of soil drainage and uptake
by the plant itself. These rates do not vary over time.

• a(t) ∈Rmn is a vector of applied irrigation rates for each
plant on day t for t = 1,2, . . . .

In this model, the primary factor for determining plant
growth is soil moisture. Letting s(t) ∈ Rmn denote a vector
of local soil moistures for each of the plants during day t,
these vectors are initialized and updated as follows, always
ensuring that the soil moisture is non-negative:

s(0) = 1 (IV.1)

s(t) = max(s(t−1)+a(t)−d,0) for t = 1,2, . . . (IV.2)

In each timestep, the visible growth of the plant depends
on the current soil moisture value. If the soil moisture is
positive, a fixed number of leaves f is added to each plant.
The location of the new leaves are sampled from a multivariate



Fig. 3: (left) We show the soil moisture dissipation rate map of the
vineyard generated using the process described in Section IV-B. Red
indicates higher dissipation rates, and blue indicates lower rates. A
constant irrigation rate is applied at each time step, and we show
the aerial image generated by the simulator in subsequent images
at timesteps 5, 10, and 15, respectively. Note that only the images
from the 10th timestep are used in the training and test datasets.

normal distribution with a mean at the center of the plant and
a covariance matrix proportional to the current soil moisture.
If the soil moisture is 0, then the plant is considered under-
watered, no leaves are added, and the existing leaves are
colored by a shade of yellow.

For experiments, we use the following simulator parameter
values: l = 100 and w = 100 for the vineyard dimensions,
m = 20 and n = 10 for the number of plants, and f = 7 for
the number of leaves added per plant in each timestep. Fig.
3 shows an example of the simulation output.

B. Dataset Generation

To generate the dataset, we apply a constant irrigation rate
of 0.5 to every plant at each timestep, and we generate an
independent soil moisture dissipation map for each example.
To simulate variability in soil moisture dissipation rates due
to variations in soil, elevation, sun, and wind, we generate
dissipation rates for each example in the dataset according
to the following process:

1) Choose the number of areas k of high dissipation rate
uniformly at random between 2, 3, and 4.

2) We model each of the areas of high dissipation rate as
a multivariate normal distribution. In the vineyard of
length l and width w, we choose the center µ(i) ∈ R2

for each of the k areas of high dissipation rate uniformly
at random.

3) We randomize a diagonal covariance matrix, Σ(i), for
each distribution. We assume independence between
the two directions and select standard deviations in
both directions uniformly at random in ranges defined
by minσx , maxσx , minσy , and maxσy ,

4) After defining these areas of high dissipation rate, we
take a linear combination of the distributions to obtain
a density de(x,y) of effective dissipation rate over the
entire vineyard, i.e.

de(x,y) =
k∑

i=1

c · exp

− (x−µ
(i)
1 )2

2Σ
(i)
1,1

2
−

(y−µ
(i)
2 )2

2Σ
(i)
2,2

2

 .

We use c = 0.4 as a scaling factor so that each
multivariate normal distribution attains a maximum
value of c. We normalize so that the local soil moisture
dissipation rate of a plant at location (x,y) in the
vineyard is d(x,y) = min(de(x,y),1).

For each example in the dataset, we use the process outlined
above to generate the soil moisture dissipation map, and we

run the simulator to obtain the corresponding aerial image. For
the ranges of standard deviations in the multivariate normal
distributions, we use minσx = 10, maxσx = 40, minσy = 10,
and maxσy = 40. Based on visual inspection, we decided to
use the generated aerial image at timestep 10 because, at this
point, the image appears most representative of true images
of vineyards. We generated 1,200 independent examples for
the training set and 200 independent examples for the test set,
which took 3 seconds per example on a machine with an Intel
i7 Core Processor and 16 GB of RAM. The leftmost image
in Fig. 3 shows an example generated from this process.

V. LEARNING THE INVERSE MODEL

We consider seven methods of learning the inverse model
Hθ : 1) constant prediction baseline, 2) linear Support Vector
Machines (SVM), 3) Random Forests Uncorrelated Plant
(RFUP), 4) Random Forests Correlated Field (RFCF), 5)
two-layer Neural Networks (NN), 6) Deep Convolutional
Neural Networks Uncorrelated Plant (CNNUP), and 7) Deep
Convolutional Neural Networks Correlated Field (CNNCF).
Each method produces a candidate inverse model that
takes in a simulated aerial image as input and outputs the
corresponding estimated moisture dissipation rates, and each
candidate inverse model has its own separate set of parameters.
In addition, for each method, we use the same training set
to tune the model’s parameters and the same testing set to
evaluate the metrics described in Section VI-A. We also
randomly split the initial training dataset into a training set
with 1,000 examples and a validation set with 200 examples
in our methods to tune hyperparameters.

We evaluated two variants of some of our methods,
comparing learning dissipation rates for the entire vineyard
simultaneously vs. learning rates for individual plants. For
the "uncorrelated" methods, which look at the vineyard on
a plant-by-plant basis and predict moisture dissipation rates
for each plant independently from neighboring plants, the
simulated images were preprocessed by cropping individual
plants from the original vineyard images. On the other hand,
the "correlated" methods look at the entire image of the
vineyard and output a vector of 200 dissipation rates.

A. Constant Prediction Baseline

As a baseline for comparison, this method produces a
model that outputs a constant prediction c, the mean of all
of the moisture dissipation rates in the training set.

B. Linear Support Vector Machine Regression (SVM)

We trained 200 linear support vector machine (SVM)
regressors using the RGB values of the images as features,
where each SVM learns the moisture dissipation rate at a
particular plant location. This was implemented using scikit-
learn. Since the number of features is significantly greater
than the number of training examples, the dimensionality is
already high, and using more complex kernels would impose
additional computation time. Thus, we use a linear kernel
instead of a radial basis function (RBF) kernel [17].



Fig. 4: The CNN architectures for the methods described in Sec. V-F and V-G. (a) The CNN Uncorrelated Plant Method. Each individual
plant image is cropped from the original simulated vineyard image and is input to the above CNN. (b) The CNN Correlated Field Method.
The simulated vineyard image is input to the above CNN, and the moisture dissipation rates for all 200 plants are estimated together.

C. Random Forest Uncorrelated Plant Method (RFUP)

In this method, we look at images of individual plants with
a random forest, using the image RGB values as features.
The simulated images are preprocessed using the cropping
method mentioned in the beginning of Section V before being
given to a RF as input. The RF was implemented with 10
decision trees using scikit-learn with a maximum depth of
20, and parameters were determined using the validation set.

D. Random Forest Correlated Field Method (RFCF)

This method is similar to that of Section V-C, except
the RF trains on images of the entire vineyard. The RF
implementation is the same as the one described in Section
V-C.

E. Two-Layer Neural Network (NN)

We implemented a two-layer feed-forward NN to serve as
comparison with the convolutional NN architectures described
in Sections V-F and V-G. It is also similar to the architecture
used by [14] in the AggieAir™ project, but not directly
comparable. In this method, aerial images are preprocessed
using the cropping process described earlier. The RGB values
of the cropped plant images are provided as input into the
NN, which consists of a hidden layer with 4096 units, ReLU
activations [12], and an output layer with a single node
containing the moisture dissipation prediction. The estimated
dissipation rates for individual plant images are concatenated
together to form an output with 200 predictions. In this
TensorFlow [1] implementation, we perform training with
dropout [30] of probability 0.25 for regularization, Kingma et
al.’s Adam [20] optimization with an initial learning rate of
1×10−3, and 40 epochs of learning. We use the validation
set to tune hyperparameters.

F. CNN Uncorrelated Plant Method (CNNUP)

In this method, the images are cropped and provided as
input to a CNN, similar to Section V-E. The CNN architecture
used in this method is illustrated in Fig. 4a. The CNN
was implemented using TensorFlow [1], the initial learning
rate for the Adam algorithm was set to 1× 10−3, and we
used mini-batches of 25 images, which were values that we
observed lead to relatively quick convergence. We optimized
the parameters θ in the CNN by applying Adam algorithm
and used ReLU activation, dropout of probability 0.25, and
training for 40 epochs. We use our CNN’s performance on
the validation set to tune hyperparameters.

G. CNN Correlated Field Method (CNNCF)

This method is similar to the CNN Uncorrelated Plant
Method in Sec. V-F, except that the whole image is used as
input. The architecture used for this method is described in
Fig 4b. Compared to the architecture used in V-F, CNNCF
uses an additional convolutional layer and max pool layer,
since the input is larger. The implementation and optimization
are the same, but we use an initial learning rate 1×10−4 and
train for 30 epochs.

Method Q1 Mean M Q3 Training
Time (s)

Const. Prediction 0.082 0.177 0.162 0.246 N/A
SVM 0.015 0.038 0.030 0.053 4141
RFUP 0.030 0.071 0.060 0.101 578
RFCF 0.047 0.109 0.094 0.152 655

Two-Layer NN 0.037 0.086 0.075 0.119 243
CNNUP 0.021 0.054 0.044 0.077 538
CNNCF 0.012 0.034 0.027 0.047 603

TABLE I: Results from applying each method to the test dataset.
We report the following statistics over all absolute value prediction
errors in the test dataset: 25th percentile (Q1), mean, median (M),
and 75th percentile (Q3). We also report the training time (s) for
each of the methods on a machine with an Intel Core i7-6850k
Processor and three Nvidia Titan X Pascal GPU’s.

VI. EXPERIMENTS

A. Evaluation Metrics

We use the median absolute error as our main evaluation
metric because of its interpretability as the normalized
prediction error. We define the absolute error for a single
moisture dissipation rate as |d j−H(x) j|, where H(x) j is the
estimated moisture dissipation rate of plant j in input image
x, and d j is the actual dissipation rate of plant j. We report
the median, since our distributions of absolute value errors
tend to be skewed; in the simulator, plants with higher soil
moisture dissipation rates have less variability in appearance
than plants with lower dissipation rates. As a result, all models
tend to have higher absolute error when predicting higher
dissipation rates. We report the interquartile range of the
absolute errors of all moisture dissipation rates in the test set
to show the distribution.

B. Estimating Moisture Dissipation Rates in the Test Dataset

We evaluated the performance of each method on the test
dataset. Each method was trained on the same training and
validation set, with no added noise. Table I lists the resulting
median and mean, as well as the first and third quartiles, of
the absolute errors in the test dataset. We found that CNNCF



Fig. 5: Example of the effect of adding Gaussian noise directly to
the simulated image. (a) The original image. (b) The image after
adding ∼N (0,63.752) noise to all three channels.

Fig. 6: Example of the effects of adding Gaussian noise to Eq.
IV.2. (a) Depicts the ground-truth moisture dissipation rate map,
(b) depicts the corresponding vineyard after 10 timesteps with no
simulation noise, and (c) depicts the corresponding vineyard after
10 timesteps with added ∼N (0,0.252) simulation noise.

had the lowest median absolute error (0.034) and smallest
interquartile range. This demonstrates the effectiveness of
CNN architectures, which take into account the structure
of the input as an image. Furthermore, CNNCF performs
better than CNNUP because it has access to all plants,
which have correlated moisture conditions. However, both
CNNCF and CNNUP perform better than the baseline neural
network approach (NN). The Linear SVM also performed
well, achieving a median error of 0.038. We believe this is due
to the linear growth model used in the simulator, which can
be effectively captured by a linear function. Finally, RFUP
performs better than RFCF. The learning problem requires
an output in high-dimensional space, so more data is needed
for RFCF to improve performance.

C. Robustness of Models to Injected Image Noise

We tested the robustness of the trained models to images
injected with RGB noise. We generated three additional
datasets by adding zero-mean Gaussian noise with standard
deviations listed in Fig. 7a. to all three channels of images
from the original training set. These standard deviation values
correspond to fractions (0.25, 0.5, and 0.75) of the range
of RGB values. An example of an image with added RGB
noise is shown in Fig. 5b. The results are shown in Fig. 7a.
We observed that the absolute errors for all trained models
increased with noise level, but at each noise level, CNNCF
had the lowest median absolute error: 0.027, 0.097, 0.010,
and 0.112. Even though the SVM produced a good model on
the noiseless dataset, it was most sensitive to injected image
noise, having the greatest error at the two highest levels of
noise.

D. Robustness of Models to Injected Soil Measurement Noise

To simulate noise and uncertainty in soil measurements,
we added i.i.d. zero-mean Gaussian noise to the soil moisture
update in Eq. IV.2 at each timestep. We generated four
additional datasets with noise, each corresponding to a
different standard deviation of the added noise: 0.25, 0.5,
0.75, and 1. An example of a resulting vineyard is shown
in Fig. 6c. The results are shown in Fig. 7b. The median

(a)

(b)

Fig. 7: Injected noise experiments. Plot of the median absolute
error (M) of the models when applied to test datasets with (a)
injected image noise and (b) injected simulation noise. The error
bars represent the 25th and 75th percentiles. Note that the results
from the two-layer neural network are omitted in (a), since this
method exhibited extremely high sensitivity to injected image noise.
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Fig. 8: Quality of models trained on different dataset sizes. Plot of
the median absolute error (M) in the test dataset of the resulting
models. The error bars represent the 25th and 75th percentiles.

absolute value error of all models increased as the noise
level increased, but either CNNCF or SVM had the lowest
median absolute error at all noise levels: 0.027, 0.034, 0.047,
0.063, and 0.079. We believe the SVM method is much more
sensitive to image noise due to the lack of expressiveness
of linear models. While image noise strongly perturbs the
input images, simulation noise changes the variation in plant
growth but produces reasonable images.

E. Effect of Training Set Sizes on Quality of Models

We also ran experiments to evaluate prediction error when
using different training set sizes, shown in Fig. 8. All of
the methods produced better models as the training set size
increased. However, the methods that utilized entire images
(SVM, RFCF and CNNCF) experienced greater improvements
compared to the other methods. At a training set size of 100,
the median absolute error of CNNCF is already lower than
the other methods.



F. Proportional Precision Irrigation Control

In the simulator, plant growth is a function of soil moisture,
so to achieve uniform growth of plants over time, we need to
vary irrigation so that the moisture profile of the entire field is
uniform. An example of a proportional control method is as
follows: let xt be the aerial image generated at timestep t, and
Hθ be our learned model using CNNCF. We use the following
update function to proportionally increase and decrease
the irrigation rate when the model predicts the moisture
dissipation rate to be above and below k, respectively:

a(t) = a(t−1)+α(Hθ (xt−1)− k ·1).

We experimentally determined that α = 1 and k = 0.25
achieved uniform growth of plants over time. An example
of the results of applying this controller in the simulator is
shown in Fig. 9. This suggests that even though the model
was trained using simulation outputs at the tenth timestep with
constant irrigation applied at each timestep, it can provide an
irrigation policy that effectively corrects for soil variation.

In the simulator, by using the above control strategy to
determine irrigation levels for each individual plant in the
test dataset, 52% less water is used than when using an
example flood irrigation strategy, in which all plants in the
field are given the same amount of water, a f lood . We found
that a f lood = dmax + k, where dmax is the largest predicted
dissipation rate in the field and k = 0.25 as in the feedback
loop, allows all plants to grow consistently.

One implementation of a precision irrigation system uses
humans or robots to adjust individual irrigation emitters at
each plant with a co-robotic device [11]. Above, we consid-
ered having perfect and instantaneous emitter adjustments,
but any implementation of this system has errors, which we
study with the simulator:
• Adjustment Errors: The robot may not adjust the emitter

by the desired amount, which is simulated as adding
zero-mean Gaussian noise to every adjustment.

• Spatial Errors: The robot may adjust a neighboring
emitter instead. We simulate spatial errors by adjusting
an adjacent emitter with probability p.

• Time Delays: Adjustments may not occur at every
timestep, simulated as adjusting once every t timesteps.

We conduct each of these experiments over the first 20
vineyard examples in the test dataset, allowing the simulation
to proceed for the first 10 timesteps before making noisy
adjustments over the next 10 timesteps. Since we would like
uniform soil moisture throughout the field, we measure the
resulting variance of the soil moisture across all 200 plants
in the field for each example and report confidence intervals
on this metric. The results are shown in Table II. We observe
that adding these types of errors increases the resulting soil
moisture variance, but they still perform significantly better
than the baseline of flood irrigation.

VII. DISCUSSION AND FUTURE WORK

We studied seven methods: 1) constant prediction baseline,
2) linear Support Vector Machines (SVM), 3) Random Forests

Fig. 9: Precision irrigation control: Example development of the
vineyard using a feedback controller based on the CNNCF inverse
model’s moisture dissipation estimates. The first image is the
simulated vineyard after ten timesteps. The field is then irrigated
using a feedback controller, and subsequent images are taken after
every five timesteps.

Experiment Mean Soil Moisture Variance
Flood (Baseline) 12.69±2.14

Precision (Baseline) 02.05±0.35
Precision (Adjustment Errors) 04.55±0.49

Precision (Spatial Errors) 02.32±1.02
Precision (Time Delays) 05.08±0.67

TABLE II: We simulate various types of noise in the implementation
of a precision irrigation controller and report 95% confidence
intervals of the resulting soil moisture variance. The baseline
experiments have no added errors. For adjustment errors, we use
zero-mean Gaussian noise with standard deviation 0.1. For spatial
errors, we use probability p = 0.3. For time delays, we incorporate
a delay of t = 3 timesteps.

Uncorrelated Plant (RFUP), 4) Random Forests Correlated
Field (RFCF), 5) two-layer Neural Networks (NN), 6) Deep
Convolutional Neural Networks Uncorrelated Plant (CNNUP),
and 7) Deep Convolutional Neural Networks Correlated Field
(CNNCF). In nearly all experiments, the CNN Correlated
Field Method had the lowest median absolute test error
compared to the other methods. Furthermore, by using
the predictions from the most accurate learned model in
a proportional precision irrigation controller that adjusts
irrigation rates for individual plants, we observe that 52% less
water is used compared to flood irrigation and this control is
robust to errors in irrigation level, location, and timing.

We acknowledge the many limitations of this first-order
plant simulator. It was designed for speed and and does not
include many other factors such as temperature, humidity,
and wind, as well as variations in lighting, plant genetics,
and pests. However, we believe these first-order results and
sensitivity analyses suggest that Deep Learning has great
potential for applications in precision irrigation.

Deep Learning techniques rely on large and relatively clean
datasets. In this case, they require significant monitoring
of a vineyard’s growing season using well-calibrated and
consistent aerial UAV images with (literal) ground truth
where soil moisture is measured at each individual plant
and well-correlated with the aerial images. This requires
careful sensing at many ground points and consistent UAV
flights, ideally at the same time of day. If the simulation
results had been negative, we would not pursue such physical
experiments. However, these positive results suggest that it
would be valuable to perform them.
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